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Pancreatic cancer (PC) represents one of the most formidable challenges

in oncology, characterized by its asymptomatic onset, delayed clinical

detection, and dismal prognosis. Among pancreatic neoplasms, pancreatic

ductal adenocarcinoma (PDAC) accounts for over 90% of cases and remains the

most aggressive form, driven by late diagnosis, intrinsic chemoresistance, and

a profoundly immunosuppressive tumor microenvironment. Recent advances

have reframed the human microbiome not as a passive bystander but

as an active architect of pancreatic tumor biology. This review delineates

the mechanistic axes through which microbial ecosystems orchestrate

PDAC progression across four key anatomical niches-gastrointestinal, oral,

urogenital, and intrapancreatic. We elucidate how microbial dysbiosis fosters

oncogenesis through immune evasion, metabolic reprogramming, and chronic

inflammation, implicating specific taxa such as Fusobacterium nucleatum,

Malassezia spp., and Porphyromonas gingivalis in immune suppression

and chemoresistance. Microbial enzymatic inactivation of gemcitabine and

modulation of cytokine networks further underscore the microbiome’s pivotal

role in therapeutic failure. Conversely, commensal and probiotic species may

potentiate immunosurveillance and enhance treatment efficacy. This review also

explores microbiota-derived biomarkers for early detection and the translational

promise of microbiome-targeted interventions, including fecal microbiota

transplantation, probiotics, and selective antibiotics. By decoding the microbial

blueprint of PC, we propose a paradigm in which the microbiome emerges as

both a biomarker and a therapeutic axis, offering novel avenues for precision

oncology. Furthermore, this integrative synthesis emphasizes the multi-omic,

immunometabolic, and therapeutic dimensions of the pancreatic cancer-

microbiome interface, where metagenomic, transcriptomic, metabolomic,

and immunomic layers converge to shape tumor evolution and therapeutic

response, advancing the vision of microbiome-informed precision oncology.
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Introduction 

As one of the most aggressive human malignancies, PC remains 
a formidable clinical and biological challenge marked by silent 
onset, delayed detection, and profound therapeutic resistance. 
The pancreas is a vital organ that performs both exocrine and 
endocrine functions, playing a crucial role in digestion, nutrient 
absorption, and metabolic regulation. However, its deep anatomical 
location and the asymptomatic nature of early disease stages 
often delay diagnosis until the malignancy is advanced and 
incurable (1). Among pancreatic neoplasms, PDAC accounts for 
over 90% of cases and is one of the most lethal solid tumors. 
This malignancy is marked by a complex and immunosuppressive 
TME that promotes metabolic reprogramming and facilitates 
interactions between diverse cellular populations, contributing to 
rapid progression and limited therapeutic response (2). Globally, 
it ranks as the 12th most diagnosed cancer, yet its mortality rate 
remains disproportionately high (3). Survival rates for PDAC are 
alarmingly low, with only ∼18% of patients surviving 1 year after 
diagnosis and just 11% surviving 5 years (4, 5). These outcomes are 
largely attributed to delayed detection and intrinsic resistance to 
therapy. 

Imaging remains the cornerstone of PC diagnosis. 
Multidetector computed tomography (CT) is the preferred 
modality for initial evaluation, while ultrasonography and 
magnetic resonance imaging (MRI) provide complementary 
anatomical resolution (6, 7). In eorts to overcome diagnostic 
delays, innovative tools such as the PAC-MANN blood-
based assay have been introduced. This platform utilizes 
magnetic nanosensors to quantify protease activity, and when 
combined with CA 19-9, achieves 85% accuracy in detecting 
early-stage PC using only 8 µL of blood. Delivering results 
within 45 min, it represents a rapid, cost-eective, and scalable 
strategy, particularly advantageous for resource-limited settings 
(8). 

Beyond classical diagnostics, the human microbiome has 
emerged as a fundamental regulator of systemic physiology and 
oncogenesis. Comprising bacteria, viruses, and fungi, this “hidden 
organ” orchestrates host metabolism, immunity, and inflammation 
(9–15). The intestinal microbiome, in particular, is indispensable 
for lifelong immune development and tolerance. Disruption 
of its homeostasis, termed dysbiosis, has been implicated in 
gastrointestinal, metabolic, cardiovascular, and neuropsychiatric 
disorders (9, 16–18). Microbial ecosystems also inhabit anatomical 
regions once considered sterile. The genitourinary tract, for 
instance, hosts a unique microbiome influenced by age, hormonal 
milieu, and host-specific factors, though reproducibility across 
studies remains limited due to methodological variability in 
sampling and sequencing (19). Increasingly, evidence indicates 
that the gastrointestinal microbiome plays a critical role in 
pancreatic tumorigenesis. Alterations in microbial composition 
and function can modulate local and systemic inflammation, 
immune regulation, and xenobiotic metabolism-mechanisms 
directly relevant to PC initiation and therapeutic resistance (20– 
23). 

Recent translational frameworks now position the microbiome 
as a mechanistic and clinically actionable component of oncology, 

advancing from correlation to intervention-ready models. Multi-
omic evidence links microbial pathways, nucleotide salvage, 
bile-acid remodeling, and tryptophan–kynurenine metabolism to 
immune evasion, stromal remodeling, and therapeutic resistance 
in PDAC, supporting the development of microbiota-informed 
diagnostics and adjunctive strategies such as live biotherapeutics 
and precision nutrition (24, 25). For low-biomass niches like 
the intrapancreatic and biliary microbiomes, standardized 
sampling, contamination control, and functional readouts 
(metatranscriptomics, metabolomics) are essential for reproducible 
biomarker discovery (13, 26). Parallel evidence indicates that early-
life microbial imprinting, shaped by delivery mode, breastfeeding, 
and maternal microbiota, programs immune tone and metabolic 
set-points that persist into adulthood. Early dysbiosis, particularly 
altered Bifidobacterium and Lactobacillus transmission, may 
predispose individuals to chronic inflammation and metabolic 
reprogramming conducive to PDAC development. Integrating 
function-first profiling with life-course microbial determinants 
could refine PDAC risk stratification and accelerate translation 
from discovery to personalized interventions (27, 28). 

Within the urogenital niche, dysbiosis has been linked to 
urinary pathologies, whereas dominance of Lactobacillus species 
such as L. crispatus supports urogenital health, while L. gasseri is 
often associated with dysbiotic states, reflecting species-specific 
eects on mucosal stability (29). Similarly, the oral microbiome 
contributes to pancreatic carcinogenesis, with pro-inflammatory 
taxa including Porphyromonas gingivalis and Aggregatibacter 
actinomycetemcomitans potentially translocating to the pancreas 
via hematogenous or lymphatic routes and altering its immune 
milieu (30). Furthermore, the intrapancreatic microbiome, 
enriched with Fusobacterium, Pseudomonas, Enterobacter, and 
Malassezia, has been shown to shape immune cell infiltration, 
influence chemotherapeutic eÿcacy, and modulate disease 
aggressiveness and prognosis (22). 

Recent metagenomic profiling has revealed that PDAC 
harbors a distinct microbial ecosystem with functional links 
to tumor metabolism and immunosuppression. Multi-omic 
integration demonstrates that specific microbial taxa contribute 
to reprogramming of amino-acid and lipid metabolism, while 
simultaneously dampening interferon signaling and cytotoxic 
lymphocyte infiltration (31). These findings suggest that microbial 
metabolic pathways operate as co-drivers of pancreatic tumor 
biology, aligning with emerging evidence that the gut–pancreas axis 
orchestrates oncogenic inflammation and immune escape (32). 

Beyond initiation and immune escape, the microbiome actively 
engineers metastatic fitness and organotropism in PDAC. Gut 
and intratumoral taxa calibrate EMT, desmoplasia, angiogenesis, 
and immune surveillance, conditioning pre-metastatic niches and 
shaping therapy response. In parallel, tumor-derived extracellular 
vesicles encode integrin “zip codes” that direct tissue targeting, 
such as α6β4/α6β1 biasing lung uptake and αvβ5 engaging liver 
Kuper cells, remodeling distant sites via cytokine induction, 
ECM dynamics, vascular leak, and immune suppression. This 
tumor-microbe-host circuitry also alters drug bioavailability and 
ICI eÿcacy: gut metabolites (SCFAs, bile-acid and tryptophan 
derivatives) reprogram endothelium and myeloid compartments, 
while Gammaproteobacteria can inactivate gemcitabine; circulating 
microbial DNA/metabolite signatures capture these states and 
predict outcomes. Operationalizing organotropism, especially 
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PDAC’s liver/peritoneal tropism, by pairing microbiome-
informed biomarkers with EV-guided niche biology could 
sharpen surveillance, risk stratification, and treatment timing 
(12, 33). 

This review synthesizes the mechanistic dimensions through 
which the microbiome shapes PC biology across four interrelated 
niches-gastrointestinal, oral, urogenital, and intrapancreatic. We 
elucidate how microbial communities modulate the pancreatic 
TME, influence immune signaling and metabolism, and alter 
treatment responsiveness via drug biotransformation and immune 
regulation. Collectively, these insights highlight the microbiome’s 
growing significance as both a diagnostic biomarker and a 
therapeutic target in the evolving landscape of PC management. 

Gastrointestinal microbiome 

Among the various microbial ecosystems in the human body, 
the gastrointestinal microbiome emerges as a critical regulator 
of systemic immunity, metabolic signaling, and inflammatory 
pathways (16) (Figure 1). These functions are increasingly 
implicated in the pathogenesis of PC. Alterations in gut microbial 
composition, particularly reduced diversity, have been observed in 
patients with PC. It has been reported a significant shift in gut 
microbiota populations, characterized by an increased abundance 
of Bacteroides and a decreased proportion of Proteobacteria, 
compared to healthy controls (34, 35). Emerging data link gut 
microbiota dysbiosis to tumor-promoting inflammation, including 
enhanced expression of pro-inflammatory cytokines such as tumor 
necrosis factor-alpha (TNF-α), a hallmark of chronic inflammatory 
states (36). Although transient inflammation is protective, its 
persistence fosters a pro-carcinogenic microenvironment that 
supports malignant transformation. 

Systemic and local inflammatory pathways converge in PC, 
where metabolic disorders such as obesity, type 2 diabetes, and 
chronic pancreatitis exacerbate gut microbiota dysbiosis and 
compromise intestinal barrier integrity. This disruption facilitates 
microbial translocation to pancreatic tissue through mesenteric or 
lymphatic routes (37). Integrative metabolomic analyses reveal that 
depletion of Faecalibacterium and Akkermansia perturbs bile-acid 
and tryptophan pathways, activating pro-inflammatory signaling 
cascades that favor epithelial–mesenchymal transition and tumor 
initiation (38, 39). However, these metabolic circuitries, particularly 
the bile-acid and tryptophan–kynurenine axes, have been more 
comprehensively characterized in metabolic disease, colorectal 
cancer, and inflammatory bowel disorders, indicating that their 
mechanistic roles in PDAC require further validation (40–43). 

Recent mechanistic studies further reveal that chronic 
inflammation reshapes the tumor immune microenvironment 
through myeloid-cell reprogramming. Specifically, CSF1R+ tumor-
associated macrophages suppress cytotoxic CD8+ T-cell infiltration 
and eector function, generating an immunosuppressive niche 
that supports tumor persistence. Targeted depletion of this 
subset restores antitumor T-cell activity and reduces tumor 
burden, highlighting the CSF1/CSF1R axis as a promising 
immunotherapeutic target in PC (44). 

Beyond immune modulation, the gut microbiome exerts 
systemic eects through the microbiota-gutbrain axis. 

Microbial species such as Lactobacillus and Bifidobacterium 
produce key neurotransmitters, including γ-aminobutyric 
acid (GABA), serotonin, and dopamine, that influence both 
vagal signaling and immune tone (45). This bidirectional 
communication system integrates neural, endocrine, and 
immune signals, modulating not only emotional and 
behavioral responses but also inflammatory pathways (46). 
Nevertheless, most mechanistic insights into microbiota-derived 
neurotransmission originate from neuropsychiatric, metabolic, 
and gastrointestinal disease models, with only indirect evidence 
linking these neuromodulatory pathways to PDAC biology. 
Consequently, their contribution to pancreatic tumorigenesis 
should be regarded as emerging rather than definitively 
established (47). 

Shifts in the balance of dominant phyla, such as Firmicutes 
and Bacteroidetes, can significantly impact host metabolism and 
immune regulation, contributing to the development of metabolic 
syndrome, chronic inflammation, and tumorigenesis (48). Lastly, 
these findings position the gastrointestinal microbiome as a 
central but heterogeneously validated driver of PC pathogenesis, 
combining well-established inflammatory mechanisms with several 
promising neuroendocrine and metabolic pathways. 

Urogenital microbiome 

Traditionally viewed as a sterile fluid and passive filtrate of 
systemic physiology, urine is now recognized as a dynamic biofluid 
capable of capturing early molecular changes associated with 
disease processes, including PDAC (49) (Figure 1). Emerging 
evidence suggests that urine harbors a range of biomarkers, 
including metabolites linked to glucose dysregulation, chronic 
inflammation, and cancer-associated cachexia, that can distinguish 
PDAC patients from healthy individuals even before the onset 
of clinical symptoms (50). One promising avenue involves 
urinary exosomal microRNAs, which are protected within 
lipid vesicles and reflect oncogenic signals emanating from the 
TME. These vesicle-encapsulated molecules exhibit remarkable 
stability, making them attractive candidates for non-invasive 
early detection (51). Although the composition of the urinary 
microbiota itself remains underexplored in the context of 
PDAC, the molecular cargo of urine may indirectly reflect 
host-microbiota interactions or microbial-driven metabolic 
shifts that contribute to tumor initiation and progression 
(52). 

Crucially, urine does not merely mirror metabolic 
disturbances; it may also encode immunological and 
microbial alterations relevant to cancer biology. This broad 
molecular representation has led to the development of 
multiplexed biomarker panels, which integrate proteins, 
metabolites, and non-coding RNAs (53–55). Such combinatorial 
strategies consistently outperform single-analyte diagnostics 
in sensitivity and specificity, oering a robust approach to 
address the clinical challenges posed by PC, a malignancy 
characterized by marked heterogeneity and rapid progression 
(56). Collectively, urine has emerged as a powerful non-
invasive matrix capable of capturing early molecular 
signals of malignancy in PC, supporting its integration into 
risk-stratification workflows. 
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FIGURE 1 

Microbiome-derived signatures across body sites modulating pancreatic cancer. Distinct microbial communities from the oral, urogenital, 
gastrointestinal, and intrapancreatic niches contribute to the pathogenesis and progression of pancreatic ductal adenocarcinoma (PDAC). Oral 
microbiota, including P. gingivalis and F. nucleatum, are associated with chronic inflammation and poor prognosis. Gastrointestinal microbes, such 
as H. pylori and E. coli, influence tumorigenesis through immune modulation and genotoxic effects. Urogenital dysbiosis, featuring Enterococcus 
faecalis and Lactobacillus iners, may contribute to systemic inflammation and immune escape. The intrapancreatic microbiome, dominated by 
Proteobacteria, Firmicutes, and Malassezia species, directly shapes the tumor microenvironment by promoting immunosuppression, metabolic 
rewiring, and chemoresistance. 

Urogenital microbiome and 
host-microbial interactions 

Once considered sterile, the urinary and genital tracts are 
now recognized as dynamic microbial ecosystems essential for 
maintaining mucosal homeostasis and immune defense. Advanced 
sequencing technologies, particularly 16S rRNA and metagenomic 
approaches, have revealed diverse microbial consortia inhabiting 
these niches, collectively referred to as the urogenital microbiome or 

urobiome. These microorganisms, though present in low biomass, 
engage in intricate metabolic and immunological cross-talk with 

the host, influencing health, disease susceptibility, and therapeutic 

outcomes (29, 57). 
The discovery that the urinary tract is not sterile has 

transformed urology and microbiome science. High-throughput 
sequencing and enhanced quantitative urine culture (EQUC) 
methods demonstrated viable microbial communities distinct 
from contamination by skin or vaginal flora. Predominant 
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genera such as Lactobacillus, Streptococcus, Gardnerella, Prevotella, 
Corynebacterium, Veillonella, and Escherichia-Shigella constitute 
the core urinary microbiota, varying according to sex, age, 
and hormonal status (19, 29, 58–60). In women, Lactobacillus-
dominated communities exert protective functions by producing 
lactic acid, hydrogen peroxide, and bacteriocins that maintain 
acidic pH and inhibit uropathogen adhesion. In contrast, 
dysbiosis, characterized by the overgrowth of Gardnerella vaginalis, 
Ureaplasma urealyticum, or Escherichia coli, is linked to urinary 
tract infections (UTIs), urgency urinary incontinence, interstitial 
cystitis, and elevated inflammatory signaling (29). 

Host-microbial interactions in the urogenital tract are primarily 
mediated by mucosal immunity and biochemical communication. 
The urothelium expresses pattern-recognition receptors (PRRs) 
such as Toll-like receptors (TLRs), which recognize microbial-
associated molecular patterns (MAMPs) and trigger innate 
immune cascades. These interactions activate antimicrobial peptide 
release and cytokine secretion, promoting a state of controlled 
immune vigilance. Symbiotic bacteria can also modulate host gene 
expression through short-chain fatty acids (SCFAs), indoles, and 
bile acid derivatives that act as epigenetic and metabolic regulators. 
For instance, SCFAs and deoxycholic acid regulate Th1/Th2 
balance and macrophage polarization, thereby influencing local 
immune tolerance and inflammatory resolution. Dysregulation of 
these pathways can predispose individuals to recurrent UTIs or 
chronic inflammatory disorders (61, 62). 

At the ecological level, quorum sensing and metabolite 
exchange underpin microbial community stability. Recent 
metabolomic-metagenomic integration has identified co-regulated 
networks linking specific metabolites to microbial taxa in the 
female urinary tract. Protective Lactobacillus species were 
associated with lipids and amino acids maintaining epithelial 
barrier integrity, while pathogenic E. coli correlated with elevated 
polyamines such as putrescine and pro-inflammatory lipids. 
Deoxycholic acid emerged as a prognostic metabolite for recurrent 
UTI, reflecting metabolic shifts toward dysbiosis and immune 
suppression (62). 

Mechanistically, cross-talk between the urinary microbiome 
and systemic physiology extends beyond local infection. The 
gut-urogenital axis links intestinal dysbiosis to urinary tract 
inflammation via translocation of microbial metabolites and 
immune mediators. In particular, bacterial lipopolysaccharides and 
tryptophan-kynurenine pathway metabolites modulate systemic 
immunity, aecting conditions such as bladder cancer and prostate 
inflammation. Moreover, gut-derived microbial metabolites can 
regulate hormonal pathways, including estrogen metabolism, 
which influences vaginal and urinary microbial composition and 
postmenopausal susceptibility to rUTI (62, 63). 

Emerging research further implicates the urogenital microbiota 
in carcinogenesis. Dysbiosis can promote chronic inflammation, 
oxidative stress, and immune evasion, fostering tumorigenic 
microenvironments in the bladder, prostate, and kidneys. In 
urothelial carcinoma, reduced microbial diversity and enrichment 
of Fusobacterium nucleatum, Acinetobacter, and Corynebacterium 
species correlate with increased cytokine production and DNA 
damage. Conversely, commensal Lactobacillus and Streptococcus 
species exhibit potential anti-tumor eects by producing anti-
inflammatory metabolites and modulating immune checkpoints. 
Integrative analyses suggest that urogenital dysbiosis and gut 

microbiome alterations jointly influence immune checkpoint 
inhibitor (ICI) response in bladder and renal cancers, with SCFAs 
enhancing Th1 polarization and tumor immunosurveillance (61, 
63, 64). 

Although extensive evidence links the gut, oral, and 
intrapancreatic microbiota to PDAC, the urogenital niche remains 
an underexplored microbial compartment in this malignancy. 
Recent evidence indicates that microbial colonization within 
pancreatic tissue is not merely contaminant but metabolically 
active, shaping immune surveillance and clinical outcomes in 
PDAC patients (65, 66). 

Intratumoral and intestinal dysbiosis have been shown to 
modulate chemotherapeutic eÿcacy and immune responses 
through microbial metabolites and inflammatory signaling 
pathways (67, 68). The microbiome is therefore emerging as 
both a biomarker and a therapeutic target across gastrointestinal 
malignancies, including PDAC, where altered microbial signatures 
correlate with disease stage and prognosis (69). Microbial 
metabolites act as key mediators linking host-microbial metabolic 
interactions to oncogenic signaling cascades. Moreover, fecal 
microbiota transplantation studies reinforce the therapeutic 
potential of microbiome modulation in PDAC (70, 71). 

Complementarily, urinary biomarker research has revealed 
that urine can function as a non-invasive reservoir of molecular 
indicators for early PDAC detection, suggesting that microbial 
or metabolic products from distal compartments may reach 
the urinary tract (50). This supports the broader concept of 
a microbiome-tumor axis that integrates cross-compartmental 
microbial traÿcking and systemic immune-metabolic regulation. 
However, no empirical study has yet characterized the urogenital 
microbiome in PDAC, representing a significant gap in the 
oncobiome field. The established immunometabolic influence of 
urogenital microbiota in other genitourinary cancers and the 
identification of urinary biomarkers in PDAC provide a strong 
rationale to investigate whether microbial communities from the 
urinary or reproductive tracts contribute to systemic inflammation, 
metabolite circulation, or immune dysregulation in pancreatic 
tumorigenesis (64, 72). Together with previous findings on urinary 
biomarkers, these insights suggest that urine may serve not only as 
a molecular biospecimen but also as a reflective medium of systemic 
and local microbial dynamics associated with PDAC. 

Methodological advances have been essential for defining these 
interactions. Low microbial biomass in urine samples presents 
unique challenges, requiring stringent contamination control and 
optimized sequencing pipelines. Enhanced protocols, such as 
EQUC, catheterized sampling, and multi-omic integration, enable 
dierentiation between resident microbiota and contaminants 
while revealing functional pathways associated with immunity and 
metabolism. Standardization across studies remains crucial for 
reproducibility and for translating microbial signatures into clinical 
diagnostics (73, 74). 

Recent comprehensive analyses of over 1,000 individuals 
demonstrated gender- and age-dependent microbial clustering into 
distinct “urotypes,” each dominated by characteristic taxa such as 
Lactobacillus, Prevotella, or Corynebacterium (19). These urotypes 
exhibit unique immunometabolic profiles and may define baseline 
microbial “set points” of urinary health. Shifts in these profiles 
could therefore serve as early indicators of pathological states 
or treatment outcomes. The concept of the oncobiome, microbial 
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genetic and metabolic contributions to carcinogenesis, has emerged 
as a key framework linking urinary microbiota to urological 
cancers, suggesting novel avenues for biomarker discovery and 
therapeutic modulation (63, 64). 

Urinary biomarkers and non-invasive 
diagnostics 

Over the past decade, the search for reliable non-invasive 
diagnostic tools in PDAC has increasingly focused on urine as 
a valuable biofluid. Its stability, ease of collection, and capacity 
to capture both systemic and tumor-specific molecular changes 
make it an attractive matrix for biomarker discovery. Notably, 
multiple studies have shown that urinary transcripts and proteins, 
particularly lymphatic vessel endothelial hyaluronan receptor 
1 (LYVE-1), regenerating islet-derived protein 1 alpha/beta 
(REG1A/REG1B), and trefoil factor 1 (TFF1), are significantly 
elevated in PDAC and can eectively distinguish early-stage tumors 
from benign pancreatic or hepatobiliary conditions with high 
diagnostic accuracy. A combined three-marker panel incorporating 
LYVE-1, REG1A, and TFF1 achieved sensitivities of up to 96% and 
specificities approaching 100%, representing a major step forward 
toward early, non-invasive detection of PDAC (75–77). 

Building on these findings, the same group validated the 
diagnostic value of this urinary biomarker panel (PancRISK) in 
large, multicentric and pre-diagnostic cohorts, revealing its capacity 
to detect PDAC up to 2 years before clinical diagnosis. When 
combined with plasma CA19-9, the panel achieved an AUC of 
0.89 for early-stage detection and maintained strong discriminative 
power for cases diagnosed up to 2 years later (77). This longitudinal 
validation supports the integration of urinary markers into risk-
stratification algorithms, particularly for high-risk individuals such 
as those with chronic pancreatitis or new-onset diabetes. 

Recent investigations have expanded the molecular spectrum of 
urinary biomarkers by incorporating inflammatory mediators and 
exosomal cargo. For instance, urinary C-reactive protein (uCRP) 
exhibited significant diagnostic performance when used alone 
or in combination with LYVE-1, REG1B, and TFF1, improving 
sensitivity and AUC values compared with plasma CA19-9 alone 
(78). Exosome-derived molecules have also gained attention as 
robust carriers of tumor-specific information. Exosomal RNA 
and protein signatures in blood and urine mirror oncogenic 
pathways, including immune escape, angiogenesis, and metabolic 
reprogramming, oering a stable medium for liquid biopsy 
applications (79). The urinary exosome compartment provides 
a particularly valuable window into pancreatic tumor biology, 
as small RNAs and microRNAs encapsulated within vesicles 
remain protected from degradation and can be detected non-
invasively (80). 

MicroRNA-based assays are currently among the most 
advanced urinary diagnostic strategies for PDAC. A multicenter 
study identified a urinary extracellular-vesicle miRNA panel 
capable of detecting PDAC across all stages, with AUC values 
exceeding 0.96 and sensitivity above 90% in early-stage disease 
(80). These miRNAs reflected tumor and microenvironmental 
expression patterns, supporting their biological relevance as 
surrogates of tumor activity. Similarly, serum-based miRNA 

sequencing combined with artificial intelligence models achieved 
near-perfect discrimination between PDAC and controls 
(AUC = 0.99), demonstrating the potential of machine-
learning-enhanced molecular profiling for clinical translation 
(81). 

Beyond nucleic acids, metabolomic profiling of urine provides 
complementary insight into PDAC pathophysiology. Systematic 
reviews have identified recurrent alterations in amino acid and 
lipid pathways, including changes in glucose, lactate, and bile 
acid metabolism, which reflect the metabolic reprogramming 
characteristic of pancreatic carcinogenesis (77). Specific urinary 
metabolites such as deoxycholic acid, identified in urinary 
biochemical ecology studies, have been linked to microbiome-
associated metabolic disturbances and could serve as prognostic 
indicators for disease progression or recurrence (62). 

Parallel to these advances, novel serum markers continue 
to emerge that complement urinary diagnostics. Laminin γ2 
monomer (LG2m) has recently been identified as a circulating 
biomarker with higher diagnostic accuracy than CEA and CA19-
9, achieving an AUC = 0.88 and providing prognostic value for 
treatment outcomes. Although serum-based, LG2m illustrates the 
importance of integrating multi-fluid biomarker systems where 
urinary, serum, and exosomal components provide a unified 
diagnostic landscape. Such multi-analyte panels, when combined 
with clinical parameters and imaging data, could redefine early 
PDAC screening strategies (82). 

Despite encouraging results, the clinical application of urine-
based biomarkers for PDAC requires cautious interpretation. 
The three-protein panel (LYVE1, REG1B, TFF1), showed very 
high discriminative performance in retrospective samples: in the 
discovery/validation sets they reported an area under the ROC 
curve (AUC) of 0.97 (95% CI 0.94–0.99), with sensitivity and 
specificity reportedly >85% for early-stage PDAC vs. controls (83). 

However, in subsequent longitudinal validation using pre-
diagnostic urine samples (PancRISK), although still robust, 
performance was attenuated: the urine-based score combined with 
plasma CA19-9 achieved an AUC of 0.89 for early-stage PDAC 
detection, with sensitivity 72% and specificity 90% up to 1 year 
before diagnosis, a decline compared to the case-control setting 
(77). 

Additional work indicates that integrating inflammatory 
markers (e.g., urinary C-reactive protein, uCRP) into the original 
panel enhances diagnostic accuracy (reported AUC ∼ 0.92), 
but these enhancements remain preliminary, and independent 
validation across diverse cohorts and analytical platforms is still 
lacking (77). Urine-derived molecular assays thus represent a 
compelling yet technically fragile frontier in PDAC detection, 
where analytical rigor and multicentric harmonization will 
determine their eventual clinical utility. 

Oral microbiome 

Homeostasis between the human host and its resident oral 
microbiota is essential for maintaining normal physiological 
function (Figure 1). The oral microbiome, one of the most 
diverse microbial ecosystems in the body, is shaped by a 
range of factors, including age, sex, oral hygiene, diet, and 
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immune status. Dominant genera commonly identified in the 
oral cavity include Streptococcus, Haemophilus, Leptotrichia, 
Porphyromonas, Prevotella, Propionibacterium, Staphylococcus, 
Veillonella, and Treponema (30). Constantly exposed to exogenous 
microorganisms through breathing, eating, and drinking, the oral 
cavity functions as a dynamic interface between host immunity and 
the external environment (84). This continuous microbial influx 
complicates the distinction between resident and transient species. 
Nevertheless, accumulating evidence indicates that specific oral 
pathogens can disseminate beyond the oral cavity, via saliva, biliary 
pathways, hematogenous spread, or lymphatic transport, to distant 
organs such as the gastrointestinal tract and pancreas, where they 
may alter local microenvironments and promote tumorigenesis 
(85). 

In a Chinese cohort comparing the oral microbiota of 
individuals with PC, benign pancreatic disease (BPD), and healthy 
controls (HC), significant compositional dierences were observed. 
Proteobacteria dominated the oral microbiota of healthy and BPD 
groups, while Bacteroidetes predominated in the PC group (85, 
86). At the family level, Leptotrichiaceae, Actinomycetaceae, 
Lachnospiraceae, Micrococcaceae, Erysipelotrichaceae, 
Coriobacteriaceae, and Moraxellaceae were enriched in PC, whereas 
Porphyromonadaceae, Campylobacteraceae, and Spirochaetaceae 
were depleted (87). Nonetheless, the relative abundance of 
these taxa exhibits substantial variation across geographic 
cohorts, sample sources, and sequencing methodologies. These 
inconsistencies highlight the necessity of standardized analytical 
frameworks and cross-cohort validation to ensure reproducibility 
and accurate interpretation of oral microbiome-cancer associations 
(88, 89). Notably, PC patients exhibited elevated levels of pro-
inflammatory and immunosuppressive oral pathogens such 
as P. gingivalis and A. actinomycetemcomitans, which activate 
inflammatory cascades and impair immune surveillance (90). 
Conversely, reductions in commensal taxa like Leptotrichia and 
Fusobacterium nucleatum suggest that both pathogenic overgrowth 
and loss of beneficial species may drive carcinogenic processes (87). 

Intrapancreatic microbiome 

Once considered a sterile site, the pancreas is now recognized 
as a host to a distinct, low-biomass microbiome that becomes 
enriched and metabolically active during PC progression. However, 
this assertion must be interpreted with caution given the well-
documented challenge of distinguishing genuine intrapancreatic 
microbial signals from reagent or procedural contaminants 
inherent to low-biomass tissues. Such contamination risks can 
confound sequencing-based analyses, underscoring the need for 
rigorous negative controls, contamination-aware bioinformatic 
filtering, and functional validation to confirm true microbial 
presence and activity (91, 92). Evidence indicates that both 
commensal and pathogenic microorganisms can translocate from 
the gut or oral cavity to the pancreatic tissue, where they reprogram 
the TME through immune modulation, inflammatory signaling, 
and metabolic interactions (93, 94). 

In PDAC, the intrapancreatic microbiota is predominantly 
composed of taxa from the phyla Proteobacteria, Firmicutes, 
Bacteroidetes, and Actinobacteria, with recurrent enrichment 

of genera such as Fusobacterium, Pseudomonas, Enterobacter, 
Escherichia, Klebsiella, Streptococcus, Bifidobacterium, and fungal 
species such as Malassezia (22, 95). These microbial populations 
contribute to tumorigenesis by promoting both innate and adaptive 
immune suppression, expanding myeloid-derived suppressor cells 
(MDSCs) and regulatory T cells, while attenuating cytotoxic CD8+ 

T-cell activity (36). Notably, F. nucleatum and Malassezia spp. 
accelerate PDAC progression by activating complement pathways, 
driving NF-κB dependent inflammation, and enhancing stromal 
fibrosis (21, 96). 

In contrast, long-term PDAC survivors display a unique 
microbial signature characterized by higher alpha diversity 
and enrichment of Pseudoxanthomonas, Saccharopolyspora, 
and Streptomyces, taxa linked to robust antitumor immune 
responses and improved overall survival (22). This compositional 
heterogeneity underscores the potential prognostic value of 
intrapancreatic microbial profiles. 

Beyond tumorigenesis, intratumoral bacteria influence 
therapeutic eÿcacy through metabolic interactions and immune 
modulation. Certain taxa are capable of enzymatically modifying 
anticancer drugs, thereby contributing to variable treatment 
responses and chemoresistance in PDAC (21). Moreover, 
microbiome-driven transcriptional reprogramming within 
the tumor compartment promotes epithelial-to-mesenchymal 
transition and favors basal-like PDAC subtypes, which are 
associated with poor prognosis (95). Deep-sequencing of 
intratumoral microbiota has recently delineated core microbial 
consortia associated with stromal remodeling and therapy response. 
Enrichment of Pseudomonas aeruginosa and Klebsiella oxytoca 
correlates with elevated IL-1β and TGF-β signaling, potentiating 
desmoplasia and immune exclusion (97). Conversely, tumors 
harboring Bifidobacterium longum and Streptococcus mitis show 
enhanced MHC-I expression and improved responsiveness to 
gemcitabine (98). 

Altogether, these insights position the intrapancreatic 
microbiome as a dynamic and therapeutically relevant axis in 
PDAC biology, where precision modulation, via antibiotics, 
probiotics, or fecal microbiota transplantation (FMT), holds 
potential to enhance chemotherapeutic eÿcacy, sensitize tumors to 
immunotherapy, and reshape future paradigms in PC management 
(94, 99, 100). 

Microbiome bacteria associated 
with pancreatic cancer 

Dysbiosis refers to an imbalance in the composition and 
function of the commensal microbiota, disrupting host-microbe 
equilibrium and predisposing to disease (101). In healthy 
individuals, the microbiota plays a central role in maintaining 
immune homeostasis, regulating metabolism, and suppressing 
opportunistic pathogens (102). However, when microbial balance 
is disturbed, a cascade of pro-inflammatory responses can be 
initiated. This inflammatory milieu disrupts host biochemical 
pathways and immune defenses, creating a permissive environment 
for disease progression and oncogenesis (103). In PDAC, dysbiosis-
driven chronic inflammation has been linked to enhanced 
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infiltration and activation of CD8+ T cells, an immune response 
that paradoxically coexists with an immunosuppressive TME (104). 

Specific microbial taxa have been shown to influence both the 
immune landscape and therapeutic response in PDAC. Certain 
Gammaproteobacteria harbor cytidine-deaminase enzymes that 
metabolize gemcitabine into inactive derivatives, illustrating how 
microbial enzymatic activity can directly influence pharmacologic 
eÿcacy and therapeutic outcomes in PDAC (105). Another 
key oncomicrobe, Fusobacterium nucleatum, a Gram-negative 
anaerobe typically resident in the oral cavity, has been detected 
in both colorectal and pancreatic tumors. Under pathological 
conditions, it disseminates systemically, promoting tumor growth, 
immune evasion, and epigenetic silencing of tumor suppressor 
genes through hypermethylation and microsatellite instability. 
Mechanistically, F. nucleatum enhances secretion of IL-8 and 
CXCL1 and disrupts the centrosomal protein CEP55, facilitating 
malignant transformation (106, 107). Enterococcus faecalis, a 
Gram-positive facultative anaerobe, also emerges as a relevant 
organism in PDAC. Normally residing in the gut, E. faecalis 
has been detected in pancreatic juice and tissue of patients with 
suspected malignancy. Its resistance to alkaline environments 
enables survival in the pancreatic duct, where it may invade host 
cells via endocytosis, supporting its role as a potential microbial 
biomarker for PC (108). 

While classically linked to gastric carcinogenesis, Helicobacter 
pylori is increasingly associated with pancreatic tumorigenesis. Two 
primary mechanisms have been proposed: (i) chronic infection 
leading to depletion of antral D-cells and reduced somatostatin, 
which in turn elevates secretin and bicarbonate secretion, inducing 
pancreatic ductal hyperplasia; and (ii) bacterial overgrowth and 
gastric hypoacidity fostering N-nitrosamine formation, potent 
carcinogens that cause DNA damage and neoplastic transformation 
(10, 109). 

Another notable oral pathogen, P. gingivalis, has also 
been linked to PDAC. Primarily associated with periodontitis, 
P. gingivalis can invade the pancreas and trigger systemic 
inflammatory responses (110). Once established in the pancreatic 
tissue, it releases peptidyl-arginine deiminase (PAD), which 
promotes the formation of neutrophil extracellular traps (NETs). 
These, in turn, stimulate the release of pro-tumorigenic chemokines 
such as CXCL1, CXCL2, and neutrophil elastase, contributing 
to fibrosis, metastasis, immune evasion, and enhanced tumor 
proliferation (12, 33, 111). 

Together, these microbial communities orchestrate chronic 
inflammation, immune dysregulation, epigenetic remodeling, 
and metabolic interference with chemotherapy, progressively 
transforming the TME into an immune-suppressive, pro-
tumorigenic niche that underscores the microbiome’s role as 
a mechanistic driver and clinically actionable target in PDAC 
(112, 113). 

Inflammatory mechanisms mediated 
by the microbiome in pancreatic 
cancer 

The human gastrointestinal microbiota, primarily composed 
of four dominant phyla: Firmicutes, Bacteroidetes, Actinobacteria, 

and Proteobacteria, plays a fundamental role in the development 
and modulation of both the innate and adaptive immune systems 
(114). Disruptions to this microbial balance, or dysbiosis, can lead 
to chronic inflammation, genomic instability in pancreatic acinar 
cells, and impaired antitumor immune surveillance, key factors in 
the pathogenesis of PDAC (37). 

Epidemiological data consistently implicate the oral microbiota 
as a contributor to PC risk. Elevated oral abundance of P. gingivalis 
(OR 1.6; 95% CI 1.15–2.22) and A. actinomycetemcomitans (OR 
2.22; 95% CI 1.16–4.18) has been significantly associated with 
increased PDAC susceptibility (90). Beyond individual species, 
a meta-analysis of eight observational studies reported a higher 
incidence of PC in individuals with periodontitis (RR 1.74; 95% 
CI 1.41–2.15) and in edentulous subjects (RR 1.54; 95% CI 
1.16–2.05), independent of confounders such as age, smoking, 
diabetes, or alcohol use (115). Expanding on these associations, 
pooled data from 14 observational studies (n = 1,276; 285 PDAC, 
342 chronic pancreatitis, 649 controls) revealed enrichment of 
Actinomyces, Bifidobacterium, Veillonella, and Escherichia-Shigella, 
alongside depletion of Firmicutes in PDAC cohorts (116). Similarly, 
retrospective biliary tract analyses identified dominant Gram-
negative taxa, E. coli, Klebsiella spp., and Pseudomonas spp., 
in PDAC but not in extra-pancreatic malignancies, suggesting 
their involvement in sustaining localized inflammatory and pro-
tumorigenic signaling (117). 

The well-recognized association between chronic pancreatitis 
and PC further underscores the oncogenic role of persistent 
inflammation (118). Inflammation-induced remodeling of the 
TME drives PDAC progression. The PDAC TME is dominated by a 
dense desmoplastic stroma, constituting up to 90% of the tumor 
mass, rich in pancreatic stellate cells, fibroblasts, macrophages, 
neutrophils, regulatory T cells, and myeloid-derived suppressor 
cells (MDSCs). This fibrotic niche, defined by hypoxia, acidity, 
and poor perfusion, facilitates immune evasion and therapeutic 
resistance (119). Elevated systemic concentrations of IL-6, IL-8, and 
IL-10 have been linked to reduced overall survival in PDAC patients 
(HR 0.204, 0.303, 0.336; all p < 0.05), highlighting their prognostic 
significance (120). Mechanistically, microbial dysbiosis triggers 
Toll-like receptor (TLR) activation in monocytes, promoting 
their M2 macrophage polarization and IL-10 secretion, thereby 
suppressing cytotoxic T-cell responses. TLR-mediated signaling 
also supports MDSC expansion and Th2 dierentiation while 
impairing Th1 and CD8+ T-cell activity (121). Key cytokines 
within the TME, including GM-CSF and CXCL1, further sustain 
metastatic potential and chemotherapy resistance (111). These 
findings delineate a microbiome-immune axis that orchestrates 
chronic inflammation, immune tolerance, and stromal remodeling 
in PDAC. Microbial dysbiosis emerges not merely as a byproduct 
of disease but as a central driver of tumor-promoting immunity, 
positioning the microbiome as a promising frontier for biomarker 
discovery and targeted intervention in PC (122). 

Integrative analyses underscore that the microbiome-
immune-stromal triad governs PDAC evolution. Single-cell 
transcriptomic and metagenomic coupling demonstrated that 
microbial lipopolysaccharide and peptidoglycan signatures activate 
tumor-associated fibroblasts, inducing CXCL12-mediated immune 
sequestration and chemoresistance (38). This microbial-stromal 
axis adds a new mechanistic layer to chronic inflammation and 
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may explain why anti-inflammatory interventions alone yield 
limited eÿcacy (97). 

Therapeutic response and the 
microbiome 

Current therapeutic strategies for PC primarily involve 
surgical resection, when feasible, in combination with adjuvant 
systemic chemotherapy, with or without radiotherapy. Commonly 
employed chemotherapy regimens include gemcitabine 
monotherapy, gemcitabine plus capecitabine or cisplatin, and 
folfirinox (a combination of fluorouracil, leucovorin, irinotecan, 
and oxaliplatin) (123). Despite these interventions, treatment 
outcomes remain poor, with minimal improvement in long-term 
survival. Both chemotherapy and radiotherapy disrupt intestinal 
mucosal integrity, promoting dysbiosis characterized by loss of 
microbial diversity and functional imbalance. This microbial 
disruption aggravates gastrointestinal toxicity, manifested as 
nausea, vomiting, and diarrhea, and impairs anti-tumor immunity, 
further limiting therapeutic eÿcacy (124, 125). 

Bacterial cytidine deaminase converts gemcitabine into its 
inactive metabolite, 2,2-difluorodeoxyuridine, thereby reducing 
intracellular drug availability and fostering chemoresistance. This 
mechanism, identified in Gammaproteobacteria such as E. coli 
and Klebsiella pneumoniae, exemplifies the metabolic interplay 
between tumor-associated microbes and pharmacologic response. 
Translational evidence links elevated microbial cytidine-deaminase 
activity with diminished chemotherapeutic eÿcacy in PDAC, 
underscoring the potential of microbiome-targeted strategies 
to restore drug sensitivity and improve patient outcomes (21, 
105, 126). 

Certain gut taxa counteract these adverse eects by enhancing 
immune surveillance and metabolic homeostasis. Bifidobacterium 
and Faecalibacterium, for instance, ferment dietary substrates into 
SCFAs such as butyrate, which exert potent anti-inflammatory and 
immunomodulatory functions (127). Butyrate enhances cytotoxic 
responses by stimulating CD4+ and CD8+ T cells to produce 
interferon-γ (IFN-γ), facilitating tumor-infiltrating lymphocyte 
recruitment and malignant cell clearance (128). Conversely, 
intestinal dysbiosis can attenuate chemotherapy responsiveness. In 
a murine model, Kesh et al. showed that diabetic mice with altered 
gut microbiota developed resistance to gemcitabine/paclitaxel 
compared to non-diabetic controls, underscoring the microbiome’s 
influence on pharmacodynamics (129). 

The PDAC immune landscape is further shaped by checkpoint 
pathways such as PD-1/PD-L1 and CTLA-4, which suppress 
T-cell activity. Immune checkpoint inhibitors (ICIs) restore anti-
tumor immunity by blocking these inhibitory signals (130). 
Notably, antibiotic-induced microbial depletion increased PD-
L1 expression and enhanced ICI eÿcacy in PDAC mouse 
models (21). Yet some microorganisms foster chemoresistance. 
E. coli and Saccharomyces cerevisiae express cytidine deaminase, 
which inactivates gemcitabine by converting it into 2,2-
difluorodeoxyuridine (126). In a cohort of 712 early-stage 
PDAC patients, antibiotic administration within 1 month of 
chemotherapy initiation improved overall survival by 37% and 
cancer-specific survival by 30%, though at the cost of increased 

treatment-related toxicity (131). Similarly, concurrent antibiotic 
use in metastatic PDAC was associated with higher rates 
of hematological toxicity, including anemia, thrombocytopenia, 
leukopenia, and neutropenia (132). 

Microbiome modulation has therefore emerged as a promising 
adjunctive strategy. Probiotic-derived metabolites such as 
ferrichrome from Lactobacillus casei trigger p53-dependent 
apoptosis and DNA fragmentation in chemoresistant cancer cells, 
reducing tumor burden in murine models (133). Likewise, butyrate 
produced by Firmicutes preserves epithelial barrier integrity and 
suppresses neoplastic transformation in gemcitabine-treated 
mice (134). Another promising approach is FMT. In a seminal 
study, Riquelme et al. transplanted fecal samples from long-term 
(>5 years) and short-term (<5 years) PDAC survivors into murine 
models. Mice receiving microbiota from long-term survivors 
exhibited significantly reduced tumor growth, suggesting that 
specific microbial configurations may contribute to better clinical 
outcomes (22). Building on these findings, a phase I clinical trial 
(NCT04975217) is currently evaluating the safety and eÿcacy of 
FMT in PDAC patients undergoing surgical resection (71). While 
preclinical studies highlight the therapeutic promise of microbiota 
modulation, translation into routine clinical practice remains 
limited, and robust, randomized trials are essential to determine 
eÿcacy, safety, and durability of response in humans. 

Building on this rationale, integrative immunotherapy 
platforms now combine checkpoint modulators, oncolytic 
or vaccine approaches, and engineered immune cells within 
microbiome-aware frameworks. These strategies exploit microbial 
influences on antigen presentation, cytokine balance, and 
myeloid polarization, aligning with chronotherapy-based and 
aI-assisted response modeling (135). However, some mechanistic 
frameworks, such as the proposed neuro-immune–microbiota 
axis, are supported largely by studies in colorectal, gastric, and 
neuroinflammatory disease models rather than pDAC-specific 
evidence. in these systems, neuropeptides (e.g., CGRP, substance 
P, VIP) reshape fibroblast activation, myeloid behavior, and 
lymphocyte traÿcking, processes that may be relevant to PDAC 
but remain insuÿciently validated in this tumor type (136, 137). 
Parallel advances nonetheless suggest that neuronal stress and 
neuromodulatory signaling could influence stromal architecture 
and immune tone. Accordingly, we present the neuro-immune– 
microbiota axis as an emerging, hypothesis-generating concept 
that warrants targeted mechanistic investigation before clinical 
integration in PDAC (17). 

Methodological considerations and 
limitations 

Contamination challenges in 
low-biomass microbiome studies 

Low-biomass microbiome research, including studies of 
pancreatic tissue, cystic lesions, and bile, faces persistent obstacles 
related to contamination that can easily overshadow genuine 
microbial signals. In these environments, the host-to-microbe DNA 
ratio often exceeds 106:1, meaning that even trace exogenous DNA 
from reagents, air, or cross-sample contact may generate false 
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positives and distort community profiles. These challenges are 
particularly significant in pancreatic cancer research, where the 
existence of a stable “intrapancreatic microbiome” remains under 
debate (91, 92). 

Quantitative analyses have demonstrated that, even when strict 
decontamination protocols are applied, residual contamination can 
still bias statistical outcomes. When more than ten contaminant 
taxa are present, false positives in dierential abundance analysis 
increase substantially, aecting downstream interpretation. 
However, when validated protocols and internal negative controls 
are employed, contamination exerts minimal influence on overall 
diversity metrics. Internal negative controls are thus preferred over 
universal “contaminant lists,” which have shown high inconsistency 
between studies and lack reproducibility (91). 

The debate over contamination is particularly evident in 
pancreatic research. Studies using advanced sequencing and 
decontamination workflows have shown that microbial reads in 
pancreatic tissue are extremely sparse and often comparable to 
those in negative controls. In analyses of intraductal papillary 
mucinous neoplasms, microbial signatures were indistinguishable 
from sterile syringes collected in the same surgical setting, 
indicating that prior invasive procedures or environmental 
exposure likely introduced bacterial DNA rather than reflecting 
true colonization (92, 138). 

Low-biomass studies also suer from host-DNA 
misclassification, database contamination, and batch eects that 
amplify artifactual patterns. Computational pipelines have shown 
that the majority of microbial reads in blood or tissue datasets 
may derive from misannotated host sequences or residual reagent 
DNA. The use of machine learning and reference-based filtering 
has improved precision, yet even the most robust bioinformatic 
pipelines can be compromised by cross-contamination among 
wells or by sequencing run variability (139, 140). 

Evidence from pancreatic cancer further illustrates these 
limitations. Analyses of pancreatic tumors and adjacent tissues 
revealed uniformly low bacterial biomass, comparable to negative 
controls, suggesting that much of the detected DNA arises from 
contamination rather than viable microorganisms. These findings 
contrast with earlier preclinical work that attributed chemotherapy 
resistance to Gammaproteobacteria capable of metabolizing 
gemcitabine. Similarly, meta-analyses linking tumor-associated 
bacteria to therapeutic outcomes must be interpreted cautiously, 
as low microbial loads and sequencing artifacts can mimic 
true microbial presence. While some studies reported bacterial 
metabolites influencing chemotherapy eÿcacy, contamination 
remains a confounding factor that challenges reproducibility 
(141, 142). 

Research addressing metabolic and environmental modifiers of 
pancreatic carcinogenesis has also acknowledged the complexity of 
low-biomass detection. Experimental models investigating obesity-
driven changes in pancreatic microbiota have reported microbial 
shifts accompanying accelerated tumor progression, but these 
dierences may reflect contamination from intestinal sources or 
amplification bias inherent to low microbial loads (143). 

At the methodological level, international guidelines now 
provide clear frameworks to prevent and report contamination. 
The consensus emphasizes that contamination cannot be 
completely eliminated but must be minimized through procedural 
rigor at every step. Recommended measures include the use 

of single-use DNA-free consumables, ethanol and nuclease 
decontamination, ultraviolet sterilization of laboratory surfaces, 
and inclusion of multiple negative and positive controls throughout 
sampling and library preparation. Transparent reporting of all 
decontamination and sequencing procedures is essential to ensure 
reproducibility and data comparability (140, 144). 

Cohort variability and sequencing 
platform bias 

Inter-study variability remains a fundamental challenge in 
microbiome-oncology, particularly in low-biomass environments 
such as the pancreatic tumor microenvironment. Dierences 
in cohort composition, geographical origin, disease stage, 
biospecimen type, and clinical handling, together with technical 
discrepancies in DNA extraction, library preparation, and 
sequencing platform, create substantial heterogeneity that can 
obscure genuine microbial signals. Comparative meta-analyses 
reveal that even studies targeting the same malignancy often 
produce discordant microbial signatures, largely driven by 
methodological inconsistencies and platform-dependent bias 
(88, 89). 

A major source of variability arises from sequencing 
methodology. Shallow shotgun metagenomics provides lower 
technical variation and greater taxonomic resolution than 16S 
rRNA sequencing, while maintaining cost eÿciency for large-scale 
studies. However, both approaches remain susceptible to upstream 
biases during DNA extraction and amplification. Primer choice, 
GC-content bias, and library preparation can all influence the 
observed microbial community composition, underscoring that 
every step from sample collection to sequencing may introduce 
systematic distortion (89, 145). 

Sequencing platform bias also propagates through downstream 
bioinformatics pipelines. Even when standardized reference 
databases are applied, subtle algorithmic variations in 
classification can yield divergent abundance profiles. Batch 
eects further compound this variability by introducing non-
biological dierences across sequencing runs or laboratories; 
correction models such as ConQuR mitigate these eects using 
conditional quantile regression while preserving biological 
signals (146). Similarly, meta-analytic frameworks like Melody 
harmonize summary statistics across studies while accounting 
for compositionality and variable sequencing depth, thereby 
improving the generalizability of microbial signatures (147). 

Cross-cohort variability remains equally problematic. Large-
scale pooled analyses, such as the 18-cohort meta-analysis of 3,741 
stool metagenomes in colorectal cancer, have shown that prediction 
models trained in one dataset frequently underperform in others, 
even when identical analytical pipelines are applied. Microbial risk 
scores developed in one population often lose discriminatory power 
when transferred to other cohorts, reflecting strong geographic and 
cohort-specific confounding (88, 148). 

In pancreatic cancer research, this issue is particularly 
pronounced. Dierences in tissue acquisition methods, such 
as endoscopic ultrasound (EUS)-guided biopsy versus surgical 
resection, and sequencing modality can profoundly aect 
transcriptional and cellular composition profiles, influencing 
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inferred tumor microenvironmental states (149). Pre-analytical 
variation and normalization strategies also significantly alter 
cfRNA biomarker detection in PDAC, reinforcing that handling 
and sequencing consistency are crucial for reliable cross-cohort 
biomarker validation (150). 

Eorts to mitigate these discrepancies through database 
harmonization are exemplified by the GMrepo v3 initiative, 
which curated nearly 119,000 microbiome datasets under uniform 
analytical pipelines and introduced the Marker Consistency 
Index (MCI) to quantify reproducibility across diseases. This 
initiative demonstrated that fewer than half of reported microbial 
biomarkers remain directionally consistent across independent 
projects, emphasizing the pervasive impact of technical and cohort 
heterogeneity. Complementarily, integrative genomic studies in 
PDAC have revealed that even non-coding mutational landscapes 
can dier between treated and untreated cohorts due to batch-
related artifacts and analytical pipeline discrepancies (151, 152). 

Limitations of 16S rRNA compared to 
shotgun metagenomics 

The 16S rRNA gene sequencing approach, although 
fundamental in microbiome studies, presents intrinsic limitations 
when compared to shotgun metagenomics. By amplifying specific 
hypervariable regions of a single conserved gene, 16S sequencing 
cannot dierentiate closely related species or strains, many of 
which play distinct biological roles in carcinogenesis and immune 
modulation (153). The dependence on primer selection and 
amplification cycles introduces compositional bias, while the 
variability in 16S gene copy number across taxa distorts relative 
abundance estimates and complicates comparisons across cohorts. 
These limitations are exacerbated in pancreatic cancer research, 
where microbial biomass is extremely low, making the method 
highly susceptible to contamination and stochastic amplification 
errors (145, 154). 

A critical shortcoming of 16S rRNA sequencing lies in its 
limited functional capacity. It relies on predictive algorithms 
such as PICRUSt or Tax4Fun to infer gene content and pathway 
activity, which often misrepresent the actual functional landscape 
of microbial communities. Shotgun metagenomics, in contrast, 
sequences all genetic material within a sample, enabling direct 
detection of microbial genes, virulence determinants, antibiotic 
resistance markers, and metabolic pathways (153, 155). 

Comparative analyses have demonstrated that shotgun 
metagenomics identifies a broader and more accurate range 
of taxa than 16S sequencing. For instance, it captures rare 
or low-abundance species that exert significant metabolic or 
immunological influence on the tumor microenvironment (145). 
In PDAC cohorts, shotgun-based profiling has revealed microbial 
and viral biomarkers capable of distinguishing cancer from control 
samples with high reproducibility across geographic populations. 
Such cross-cohort consistency remains unachievable with 16S 
sequencing, which often produces variable results due to primer 
bias and insuÿcient resolution (155, 156). 

16S sequencing also excludes large components of the 
microbiome, including fungi, viruses, and archaea, which 
collectively shape cancer-associated microbial networks. Shotgun 

metagenomics overcomes this limitation by simultaneously 
capturing multi-kingdom microbial DNA, thereby enabling 
integrative bacteriome-mycobiome-virome analyses (157). In 
biliary and pancreatic cancer studies, shotgun sequencing 
uncovered fungal enrichment and dysregulated pathways involving 
sphingolipid, bile acid, and fatty acid metabolism, highlighting 
functional cross-talk between bacterial and fungal communities 
that would remain invisible with 16S-based approaches (158). 

Dierences in quantitative accuracy are equally pronounced. 
While both methods can resolve high-level taxonomic patterns, 
shotgun metagenomics provides finer species- and strain-
level resolution, improving ecological interpretation and 
clinical relevance. It has demonstrated superior accuracy in 
quantifying taxa abundance and detecting disease-related shifts 
in low-abundance microbial populations. These advantages are 
particularly meaningful in PDAC, where microbial heterogeneity 
and low biomass require both sensitivity and precision to detect 
biologically relevant taxa (156, 157). 

From a technical perspective, 16S sequencing suers from 
low reproducibility due to its dependence on primer design, 
read depth, and clustering algorithms. In contrast, shallow 
shotgun metagenomics achieves robust reproducibility with 
reduced technical variation while maintaining comprehensive 
taxonomic and functional coverage (159). Its lower cost compared 
to deep sequencing makes it a practical alternative for large-
scale microbiome studies, combining resolution and feasibility. 
Furthermore, in clinical samples such as bile or pancreatic fluid, 
metagenomic next-generation sequencing (mNGS) exhibits greater 
pathogen detection sensitivity and higher diagnostic concordance 
than both culture and 16S methods (145, 160). 

Conclusion and future perspectives 

The intricate interplay between the gastrointestinal, urogenital, 
oral, and intrapancreatic microbiomes and PC highlights 
a paradigm shift in our understanding of tumorigenesis, 
inflammation, and therapeutic resistance. Mounting evidence 
demonstrates that the microbiota is not merely a bystander but an 
active participant in modulating pancreatic oncogenesis, immune 
evasion, and chemoresistance (29, 86, 103). The gut microbiome 
influences PC onset and progression through dysbiosis, metabolite 
dysregulation, and immunosuppressive signaling, an axis that 
holds significant diagnostic and therapeutic potential (9, 10). 
Concurrently, urogenital microbiota signatures, particularly 
urinary metabolites and exosomal microRNAs, have emerged as 
promising non-invasive biomarkers (51). The oral microbiome, 
especially species such as F. nucleatum and P. gingivalis, has been 
associated with increased PC risk, suggesting potential utility in 
early detection through salivary or dental microbiota screening 
(90). Notably, the pancreatic TME harbors a low-biomass but 
metabolically active intratumoral microbiota, composed mainly of 
Fusobacterium, Pseudomonas, Klebsiella, Escherichia, Streptococcus, 
Bifidobacterium, and Malassezia species, which promotes immune 
suppression, modulates antitumor immunity, and inactivates drugs 
like gemcitabine through microbial enzymes (93). Throughout 
this review, we distinguish mechanisms supported by direct PDAC 
evidence from those inferred from other malignancies or systemic 
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disease models, explicitly framing the latter as emerging and 
hypothesis-generating axes. 

Emerging evidence positions the microbiome as a metabolic, 
immunologic, and stromal integrator of pancreatic carcinogenesis. 
High-resolution multi-omic datasets reveal that intratumoral 
microbial genes regulating nucleotide salvage and SCFA synthesis 
predict immunotherapy responsiveness and survival (31, 98). 
Likewise, microbiota-driven metabolic rewiring, particularly 
involving the tryptophan-kynurenine and bile-acid axes, defines 
the inflammatory and immunometabolic trajectories of PDAC 
progression (32). These insights expand the conventional view of 
dysbiosis beyond compositional shifts, highlighting functionally 
active microbial pathways that interface with oncogenic signaling 
and therapeutic resistance. At the same time, several of these 
functional links are more robustly established in colorectal 
and hepatobiliary cancers or metabolic disease than in PDAC, 
underscoring the need for dedicated pancreas-focused validation. 
In parallel, comparative work has exposed substantial cross-cohort 
and platform-dependent variability in microbial signatures, 
showing that many candidate “oncomicrobes” and risk scores 
lose discriminatory power when transferred across populations, 
especially when derived from 16S rRNA sequencing rather than 
shotgun metagenomics or multi-kingdom profiling. Consequently, 
future PDAC microbiome frameworks must integrate robust, 
harmonized pipelines (including shallow shotgun metagenomics, 
virome/mycobiome interrogation, and standardized analytical 
workflows) to move from cohort-specific associations toward 
reproducible, clinically actionable signatures (147, 161–163). 

Beyond composition alone, an emerging temporal layer has 
been proposed to integrate the gut–pancreas axis with host clocks: 
peripheral circadian oscillators in the gut and pancreas coordinate 
immune tone, metabolic flux (e.g., bile-acid and tryptophan 
pathways), and barrier function, while diurnal microbiota rhythms 
reciprocally entrain clock gene programs in distal tissues (164– 
167). To date, these circadian–microbiome interactions have been 
demonstrated predominantly in metabolic and gastrointestinal 
disease models rather than in PDAC-specific cohorts. Disruption 
of this bidirectional circuit, by shift work, irregular feeding, 
or metabolic stress, induces dysbiosis, amplifies inflammatory 
signaling, and degrades antitumor immunity in experimental 
systems, raising the hypothesis that similar perturbations could 
contribute to pancreatic tumor promotion and therapy resistance 
(20, 165, 166). We therefore consider the circadian–microbiome– 
pancreas axis a conceptual, hypothesis-generating framework that 
requires targeted mechanistic and clinical studies in PDAC. 
Conceptually, microbe-host control of gene regulation extends 
to epigenetic remodeling: in virus-driven cancers, oncoproteins 
rewire DNA methylation and histone marks to sustain immune 
evasion and oncogenic transcriptional states, an instructive 
paradigm that underscores how exogenous biological agents 
can durably program host chromatin and suggests analogous, 
testable mechanisms for microbiome-linked PDAC biomarkers and 
interventions (111, 168). 

Mechanistically, inflammation remains central. Microbiota-
induced immune dysregulation, including T cell exhaustion 
and myeloid cell reprogramming, drives tumor progression and 
therapy failure (44). Certain bacteria, such as Enterococcus 
faecalis and H. pylori, have been shown to invade pancreatic 
tissue, exacerbating inflammation and mutagenesis (108). Bacterial 

colonization of the pancreatic TME is now recognized not as 
incidental but as functionally active. Intratumoral microbiota 
may directly contribute to chemoresistance through enzymatic 
drug degradation, particularly against gemcitabine, and modulate 
immunosurveillance. Microbiota-driven inflammatory circuits, 
particularly those involving LPS-TLR4 and downstream cytokine 
signaling, remain pivotal in sustaining immune evasion and tumor 
progression (52, 105, 112). Emerging research highlights that 
the microbiome also modulates therapeutic response. Strategies 
such as FMT, narrow-spectrum antibiotics, or probiotic regimens 
are being explored to improve immunotherapy outcomes or 
reverse drug resistance. These approaches are especially relevant 
in the era of precision oncology, where patient-specific microbial 
signatures could inform individualized treatments (14, 49, 71). Yet, 
recent low-biomass and contamination-aware re-analyses caution 
that some earlier associations between intratumoral bacteria and 
gemcitabine inactivation or ICI response may have overestimated 
microbial contribution, emphasizing the need to corroborate 
sequencing-based findings with culture, metabolomics, gnotobiotic 
models, and spatially resolved host–microbe mapping before 
translating them into routine clinical practice. Single-cell and 
spatial multi-omic studies that jointly profile fibroblasts, myeloid 
cells, lymphocytes, and microbial or microbial-derived signals 
are poised to refine which immune–stromal circuits are truly 
microbiome-dependent versus driven by tumor-intrinsic programs 
(169–171). 

Looking forward, the microbiome stands as both a risk 
factor and therapeutic ally in PC, a duality that, if eectively 
decoded, may revolutionize prevention, early diagnosis, and 
individualized therapy in this highly lethal malignancy (20, 
166). Harnessing multi-omic profiling to disentangle the complex 
host-microbiome-tumor crosstalk oers a promising avenue 
to identify mechanistic drivers and actionable biomarkers. 
Integrative analyses combining metagenomics, transcriptomics, 
metabolomics, and immunomics have already revealed microbial 
fingerprints with diagnostic and therapeutic relevance (21, 132). 
Prospective, longitudinal clinical trials are urgently needed 
to evaluate the eÿcacy and safety of microbiome-informed 
diagnostics and therapeutics in PC (111). In this context, 
enthusiasm for urine-based and serum-based biomarker panels 
must be tempered by evidence that diagnostic performance often 
attenuates in pre-diagnostic, screening-like settings compared with 
retrospective case–control cohorts, and that analytical variability 
across platforms can substantially aect sensitivity and specificity. 
Harmonized pre-analytical protocols, external quality assessment 
schemes, and regulatory-grade validation (including multi-center, 
multi-ethnic cohorts) will be required before microbiome-
derived or microbiome-reflective biomarkers can be responsibly 
incorporated into PDAC surveillance algorithms for high-risk 
populations (75, 172). 

The coming decade may well redefine PC management through 
the lens of microbial ecology. Integrative microbiome profiling will 
likely transform microbial ecosystems into actionable determinants 
of therapeutic precision, bridging the gap between microbial 
biology and individualized cancer management, and positioning 
microbiome modulation as a cornerstone of next-generation PC 
prevention and treatment (37, 167, 168). Key priorities will 
include (i) establishing international PDAC microbiome consortia 
with shared biobanking and harmonized sequencing pipelines; 
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(ii) embedding microbiome endpoints into interventional trials of 
chemotherapy, radiotherapy, and immunotherapy; (iii) rationally 
designing microbiome-targeted interventions (live biotherapeutics, 
diet-based strategies, narrow-spectrum antibiotics, engineered 
phages, or FMT) with clear mechanistic hypotheses; and (iv) 
ensuring that data and analytical tools remain openly accessible 
to accelerate replication, meta-analysis, and translation. If these 
goals are met, the microbiome may transition from a descriptive 
biomarker of PDAC to a controllable axis of disease modification 
and therapeutic optimization. 
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D, et al. Rewriting the urinary tract paradigm: the urobiome as a gatekeeper of host 
defense. Mol Biol Rep. (2025) 52:497. doi: 10.1007/s11033-025-10609-w 

58. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. 
Urine is not sterile: use of enhanced urine culture techniques to detect resident 
bacterial flora in the adult female bladder. J Clin Microbiol. (2014) 52:871–6. doi: 
10.1128/JCM.02876-13 

59. Neugent ML, Hulyalkar NV, Nguyen VH, Zimmern PE, De Nisco NJ. Advances 
in understanding the human urinary microbiome and its potential role in urinary tract 
infection. mBio. (2020) 11:e218–20. doi: 10.1128/mBio.00218-20 

60. Roth RS, Liden M, Huttner A. The urobiome in men and women: a 
clinical review. Clin Microbiol Infect. (2023) 29:1242–8. doi: 10.1016/j.cmi.2022. 
08.010 

61. Winslow TB, Gupta S, Vaddaraju VS, Guercio BJ, Sahasrabudhe DM. The 
microbiome and genitourinary cancers: a new frontier. Cancers. (2025) 17:3606. doi: 
10.3390/cancers17223606 

62. Neugent ML, Hulyalkar NV, Ghosh D, Saenz CN, Zimmern PE, Shulaev V, 
et al. Urinary biochemical ecology reveals microbiome-metabolite interactions and 
metabolic markers of recurrent urinary tract infection. NPJ Biofilms Microbiomes. 
(2025) 11:216. doi: 10.1038/s41522-025-00844-1 

63. Zheng Z, Xie D, Han Y, Li G, Wang S, Zhang X, et al. Deciphering the urinary 
microbiome and urological cancers: from correlation to mechanisms and treatment. 
Front Microbiol. (2025) 16:1699308. doi: 10.3389/fmicb.2025.1699308 
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